Rotation Vectors and Fixed Points of Area Preserving Surface Diffeomorphisms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homoclinic Points for Area-preserving Surface Diffeomorphisms

We show a Cr connecting lemma for area-preserving surface diffeomorphisms and for periodic Hamiltonian on surfaces. We prove that for a generic Cr , r = 1, 2, . . ., ∞, area-preserving diffeomorphism on a compact orientable surface, homotopic to identity, every hyperbolic periodic point has a transversal homoclinic point. We also show that for a Cr, r = 1, 2, . . ., ∞ generic time periodic Hami...

متن کامل

Area-preserving Surface Diffeomorphisms

We prove some generic properties for Cr , r = 1, 2, . . . ,∞, areapreserving diffeomorphism on compact surfaces. The main result is that the union of the stable (or unstable) manifolds of hyperbolic periodic points are dense in the surface. This extends the result of Franks and Le Calvez [8] on S to general surfaces. The proof uses the theory of prime ends and Lefschetz fixed point theorem.

متن کامل

Area-preserving Diffeomorphisms and Nonlinear Integrable Systems

Present state of the study of nonlinear “integrable” systems related to the group of area-preserving diffeomorphisms on various surfaces is overviewed. Roles of area-preserving diffeomorphisms in 4-d self-dual gravity are reviewed. Recent progress in new members of this family, the SDiff(2) KP and Toda hierarchies, is reported. The group of area-preserving diffeomorphisms on a cylinder plays a ...

متن کامل

Periodic points of Hamiltonian surface diffeomorphisms

The main result of this paper is that every non-trivial Hamiltonian diffeomorphism of a closed oriented surface of genus at least one has periodic points of arbitrarily high period. The same result is true for S2 provided the diffeomorphism has at least three fixed points. In addition we show that up to isotopy relative to its fixed point set, every orientation preserving diffeomorphism F : S →...

متن کامل

Homoclinic Points in Symplectic and Volume-preserving Diffeomorphisms

Let M be a compact n-dimensional manifold and ω be a symplectic or volume form on M. Let φ be a C1 diffeomorphism on M that preserves ω and let p be a hyperbolic periodic point of φ. We show that generically p has a homoclinic point, and moreover, the homoclinic points of p is dense on both stable manifold and unstable manifold of p. Takens [11] obtained the same

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1996

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-96-01502-4